



**Ph.D COURSE ROBOTICS AND INTELLIGENT MACHINES**  
**CURRICULUM HOSTILE AND HAZARDOUS**  
**ENVIRONMENTS (CODICE 11660), XLI CICLO**

Following the assessment of qualifications (Step 1), the below candidates:

| Cognome | Nome       | Punteggio /60 | Tema 1                                                                                       | Tema 2                                                                                   | Tema 3                                        |
|---------|------------|---------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------|
| SORGE   | MARCELLO   | 52            | ADVANCED NAVIGATION AND GUIDANCE SYSTEMS FOR AUTONOMOUS MARINE ROBOTS                        |                                                                                          |                                               |
| DONATO  | FRANCESCO  | 50            | LEARNING ADAPTIVE ROBOTIC BEHAVIOR FOR MANIPULATION IN UNSTRUCTURED ENVIRONMENTS             | GEOMETRY AND PHYSICS-BASED INDUCTIVE BIAS FOR ROBUST AND EXPLAINABLE FOUNDATIONAL MODELS | RIEMANNIAN GEOMETRY IN REINFORCEMENT LEARNING |
| DUDDU   | SAI SRIRAM | 50            | MECHATRONIC DESIGN AND END-EFFECTOR DEVELOPMENT FOR INSPECTION AND MAINTENANCE MOBILE ROBOTS |                                                                                          |                                               |
| MORONI  | CLAUDIO    | 50            | RIEMANNIAN GEOMETRY IN REINFORCEMENT LEARNING                                                |                                                                                          |                                               |

|                   |           |    |                                                                                          |                                                                                          |                                                            |
|-------------------|-----------|----|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------|
| ROCCA             | GIOVANNI  | 49 | AERIAL DRONES FOR AUTONOMOUS INSPECTION OF PHOTOVOLTAIC PLANTS                           |                                                                                          |                                                            |
| GERVINO           | FRANCESCO | 48 | RIEMANNIAN GEOMETRY IN REINFORCEMENT LEARNING                                            | GEOMETRY AND PHYSICS-BASED INDUCTIVE BIAS FOR ROBUST AND EXPLAINABLE FOUNDATIONAL MODELS |                                                            |
| PAEZ FRANCO       | JAVIER    | 48 | LEARNING ADAPTIVE ROBOTIC BEHAVIOR FOR MANIPULATION IN UNSTRUCTURED ENVIRONMENTS         |                                                                                          |                                                            |
| ROJASRODRIGUEZ    | MIGUEL    | 48 | GEOMETRY AND PHYSICS-BASED INDUCTIVE BIAS FOR ROBUST AND EXPLAINABLE FOUNDATIONAL MODELS | RIEMANNIAN GEOMETRY IN REINFORCEMENT LEARNING                                            |                                                            |
| CANE              | LORENZO   | 47 | RIEMANNIAN GEOMETRY IN REINFORCEMENT LEARNING                                            | GEOMETRY AND PHYSICS-BASED INDUCTIVE BIAS FOR ROBUST AND EXPLAINABLE FOUNDATIONAL MODELS | ELECTROSTATIC ZIPPING TRANSDUCERS FOR UNDERWATER OPERATION |
| FRANCISCO AGUSTIN | ERIK      | 46 | AERIAL DRONES FOR AUTONOMOUS INSPECTION OF PHOTOVOLTAIC PLANTS                           |                                                                                          |                                                            |
| BENYAHIA          | AYMEN     | 45 | ADVANCED NAVIGATION AND GUIDANCE SYSTEMS FOR AUTONOMOUS MARINE ROBOTS                    | AERIAL DRONES FOR AUTONOMOUS INSPECTION OF PHOTOVOLTAIC PLANTS                           |                                                            |
| KALANTARY         | HANNANEH  | 45 | LEARNING ADAPTIVE ROBOTIC BEHAVIOR FOR MANIPULATION IN                                   | GEOMETRY AND PHYSICS-BASED INDUCTIVE BIAS FOR ROBUST AND                                 | NEUROMORPHIC ACTIVE EXPLORATION                            |

|                  |                   |    |                                                                                               |                                                                                               |                                                                                  |
|------------------|-------------------|----|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                  |                   |    | UNSTRUCTURED ENVIRONMENTS                                                                     | EXPLAINABLE FOUNDATIONAL MODELS                                                               |                                                                                  |
| LECCE            | MARCO             | 45 | GEOMETRY AND PHYSICS-BASED INDUCTIVE BIAS FOR ROBUST AND EXPLAINABLE FOUNDATIONAL MODELS      | RIEMANNIAN GEOMETRY IN REINFORCEMENT LEARNING                                                 |                                                                                  |
| SQUITIERI        | BENIAMINO         | 45 | LEARNING ADAPTIVE ROBOTIC BEHAVIOR FOR MANIPULATION IN UNSTRUCTURED ENVIRONMENTS              | MECHATRONIC DESIGN AND END-EFFECTOR DEVELOPMENT FOR INSPECTION AND MAINTENANCE MOBILE ROBOTS  | NEUROMORPHIC ACTIVE EXPLORATION                                                  |
| GE               | HANWEN            | 44 | GEOMETRY AND PHYSICS-BASED INDUCTIVE BIAS FOR ROBUST AND EXPLAINABLE FOUNDATIONAL MODELS      |                                                                                               |                                                                                  |
| MATTHIEU         | COTSAFTIS-GARNIER | 44 | MECHATRONIC DESIGN AND END-EFFECTOR DEVELOPMENT FOR INSPECTION AND MAINTENANCE MOBILE ROBOTS  | ADVANCED NAVIGATION AND PERCEPTION FOR MOBILE ROBOTS AND COBOTS IN COMPLEX NAVAL ENVIRONMENTS | LEARNING ADAPTIVE ROBOTIC BEHAVIOR FOR MANIPULATION IN UNSTRUCTURED ENVIRONMENTS |
| RAZAVI           | SEYED EMAD        | 44 | ADVANCED NAVIGATION AND PERCEPTION FOR MOBILE ROBOTS AND COBOTS IN COMPLEX NAVAL ENVIRONMENTS | AERIAL DRONES FOR AUTONOMOUS INSPECTION OF PHOTOVOLTAIC PLANTS                                | ADVANCED NAVIGATION AND GUIDANCE SYSTEMS FOR AUTONOMOUS MARINE ROBOTS            |
| SEVILLANO COLINA | KIMBERLY GRACE    | 43 | ADVANCED NAVIGATION AND PERCEPTION FOR MOBILE ROBOTS AND COBOTS IN COMPLEX NAVAL ENVIRONMENTS | LEARNING ADAPTIVE ROBOTIC BEHAVIOR FOR MANIPULATION IN                                        | NEUROMORPHIC ACTIVE EXPLORATION                                                  |

|          |              |    |                                                                                               |                                                                                  |                                                                                               |
|----------|--------------|----|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|          |              |    |                                                                                               | UNSTRUCTURED ENVIRONMENTS                                                        |                                                                                               |
| WEI      | SU           | 42 | GEOMETRY AND PHYSICS-BASED INDUCTIVE BIAS FOR ROBUST AND EXPLAINABLE FOUNDATIONAL MODELS      |                                                                                  |                                                                                               |
| AHMADI   | SEYED SHAYAN | 41 | ADVANCED NAVIGATION AND PERCEPTION FOR MOBILE ROBOTS AND COBOTS IN COMPLEX NAVAL ENVIRONMENTS | LEARNING ADAPTIVE ROBOTIC BEHAVIOR FOR MANIPULATION IN UNSTRUCTURED ENVIRONMENTS |                                                                                               |
| BASILE   | ANDREA       | 41 | NEUROMORPHIC ACTIVE EXPLORATION                                                               | AERIAL DRONES FOR AUTONOMOUS INSPECTION OF PHOTOVOLTAIC PLANTS                   | ADVANCED NAVIGATION AND PERCEPTION FOR MOBILE ROBOTS AND COBOTS IN COMPLEX NAVAL ENVIRONMENTS |
| HOSSEINI | AMIRALI      | 41 | NEUROMORPHIC ACTIVE EXPLORATION                                                               | ELECTROSTATIC ZIPPING TRANSDUCERS FOR UNDERWATER OPERATION                       | AERIAL DRONES FOR AUTONOMOUS INSPECTION OF PHOTOVOLTAIC PLANTS                                |
| MEMON    | YUMNA MEMON  | 41 | MECHATRONIC DESIGN AND END-EFFECTOR DEVELOPMENT FOR INSPECTION AND MAINTENANCE MOBILE ROBOTS  | ADVANCED NAVIGATION AND GUIDANCE SYSTEMS FOR AUTONOMOUS MARINE ROBOTS            |                                                                                               |
| GANDHI   | ANANYA       | 40 | LEARNING ADAPTIVE ROBOTIC BEHAVIOR FOR MANIPULATION IN UNSTRUCTURED ENVIRONMENTS              | ADVANCED NAVIGATION AND GUIDANCE SYSTEMS FOR AUTONOMOUS MARINE ROBOTS            | NEUROMORPHIC ACTIVE EXPLORATION                                                               |

|                         |                    |    |                                                                                               |                                                                                               |                                                                                               |
|-------------------------|--------------------|----|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| KAFILI GAVGANI          | ALI                | 40 | ADVANCED NAVIGATION AND GUIDANCE SYSTEMS FOR AUTONOMOUS MARINE ROBOTS                         | AERIAL DRONES FOR AUTONOMOUS INSPECTION OF PHOTOVOLTAIC PLANTS                                | ADVANCED NAVIGATION AND PERCEPTION FOR MOBILE ROBOTS AND COBOTS IN COMPLEX NAVAL ENVIRONMENTS |
| KHAN                    | MOHAMMAD SAIFULLAH | 40 | ADVANCED NAVIGATION AND GUIDANCE SYSTEMS FOR AUTONOMOUS MARINE ROBOTS                         | ADVANCED NAVIGATION AND PERCEPTION FOR MOBILE ROBOTS AND COBOTS IN COMPLEX NAVAL ENVIRONMENTS | AERIAL DRONES FOR AUTONOMOUS INSPECTION OF PHOTOVOLTAIC PLANTS                                |
| MANSOURNIA              | POUYA              | 40 | ELECTROSTATIC ZIPPING TRANSDUCERS FOR UNDERWATER OPERATION                                    | LEARNING ADAPTIVE ROBOTIC BEHAVIOR FOR MANIPULATION IN UNSTRUCTURED ENVIRONMENTS              | MECHATRONIC DESIGN AND END-EFFECTOR DEVELOPMENT FOR INSPECTION AND MAINTENANCE MOBILE ROBOTS  |
| TALESHI                 | REZA               | 40 | ADVANCED NAVIGATION AND PERCEPTION FOR MOBILE ROBOTS AND COBOTS IN COMPLEX NAVAL ENVIRONMENTS | ADVANCED NAVIGATION AND GUIDANCE SYSTEMS FOR AUTONOMOUS MARINE ROBOTS                         | AERIAL DRONES FOR AUTONOMOUS INSPECTION OF PHOTOVOLTAIC PLANTS                                |
| VASANTHI CHANDRASEKARAN | GAUSIC             | 40 | NEUROMORPHIC ACTIVE EXPLORATION                                                               |                                                                                               |                                                                                               |

are invited to the online interview (Step 2 - oral examination) on Friday 23th January at 9.00 (Central European Time) through the Teams call:

<https://teams.microsoft.com/meet/3839395388670?p=1DDcW4y6WALhYgd8PR>

If you have problems connecting, please feel free to contact Prof. Antonio Sgorbissa at +39 320 4218938 or at [antonio.sgorbissa@unige.it](mailto:antonio.sgorbissa@unige.it)

Candidates will be required to exhibit a valid identification document prior to starting the interview.